Kalimantan Exotic & Legendary


Semasa : Apa Nak Jadi Orang Sekarang...

Begitulah tajuk kecil di muka depan akhbar myMetro. Sila klik link di atas untuk berita penuh.

Saya yang sedang berehat di kantin Nihon Canpack (M) Sdn. Bhd. sambil meneguk segelas air oren kaget. Hampir-hampir tersembur isi mulut. Mengenangkan teman sekerja yang berada di hadapan, diurungkan niat itu. Lalu kami berbicara seputar tajuk itu. Hasilnya hanyalah gelak tawa menceritakan kebodohan manusia zaman ini.

Sudahlah berzina, berlari bogel. Dengan tidak merasa malu, hanya melaporkan kepada polis, menceritakan segala-galanya. Lalu akhbar yang juga bagi saya kurang etika menyiarkan berita seperti ini dengan begitu 'telus' sekali, tanpa basa basi.

Dan wanita 18 tahun itu pasti akan dibiarkan terus menjalani kehidupan seperti biasa. Dan besar sekali kemungkinan yang dia akan meneruskan perbuatan terkutuk itu. Dan pastinya akan menambahkan jumlah bayi yang akan dibuang merata-rata. Tajuk utama akhbar yang sama juga memaparkan 2 orang bayi yang dibuang bogel, seorang di atas tong sampah dan seorang lagi di atas tanah, cuma dilapik sehelai daun pisang.

Umatku...
Apa yang akan terjadi kepadamu..
Sedang para da'inya sibuk bergaduh 'merekrut' ahli, melarang orang lain mengikuti selain daripadanya.
Lalu umat terus tersiksa.
Umat terus merana.
Umat terus hancur luluh.

Penat..sungguh saya penat. Saya akan pastikan berlakunya perubahan. Dan saya mengajak kamu semua yang membaca berfikir dan bersama melakukannya. Mulakan dengan diri kita. Letakkan diri kita dalam suasana tarbiyah, dan ajak orang lain bersama.

Buat teman daripada jemaah lain, pastikan anda bersaing dengan cara yang sihat. Cukuplah bergaduh. Cukuplah menghalang-halangi orang lain. Mari kita bersama membaiki umat. Biarlah mad'u kita lari ikut orang lain. Itu tandanya peluang orang lain untuk kita dekati. Mad'u kita tetap akan jadi orang baik, inysa-Allah. mari, kembali seru orang kepada Allah. Insya-Allah perubahan akan berlaku.

Sedarlah, kita boleh merubahnya. Mari baca artikel lama saya, yang saya rasa amat berkaitan dengan isu ini.
Sedarlah Remaja Islam.

Semoga kita menjadi generasi rabbani abad ke 20.
Salam Perjuangan buat semua.

~End Of Post~


0 comments:

welcome to my blog. please write some comment about this article ^_^

University of Hawaii Regents approve plans for TMT on Mauna Kea


This is an update of the controversy over the presence of observatories on top of Mauna Kea. Yesterday, the University of Hawaii Board of Regents unanimously approved the plans for the construction of the Thirty Meter Telescope (TMT) - one of the largest planned telescopes for the next decade (it is expected to be operational by 2018). Some of the Native Hawaiian and environmentalist groups are unhappy about it and still plan to challenge the approval in the courts. The TMT now will now apply for a permit from the state, however, it is looking more and more likely that TMT will indeed be located on Mauna Kea. As an astronomer myself, I'm happy to see that this time astronomers have been more sensitive to the local concerns over Mauna Kea and I really hope that relations improve between scientists and those opposing the new telescope. Perhaps the key is for us to recognize that there is a real loss of a sacred space for some native Hawaiians and be mindful of the fact even when in disagreement about the future telescope.

Here is the story from the Washington Post. In case you want to hear from the locals on both sides of the debate, here is a letter to the editor (on behalf of The Sierra Club?) in West Hawaii Today against the proposed telescope, and here is a letter in response in the same newspaper (also see this blog post: Is The Sierra Club Anti-Hawaiian?). As you can see this is a complicated issue with religion, politics, environmental concerns, economics, and US history in Hawaii, all mixed in together. While this case is different from the run-of-the-mill science & religion issues (such as evolution), it is still in the domain of science & religion. Instead of epistemology, the debate here is over identity. Tracy Leavelle (Creighton University) and I are close to finishing a paper on the topic, and I hope to provide you with an update on it soon.

In the mean time, here are previous posts on the issue:
Management Plan Approved for Telescopes on Sacred Mauna Kea
Hawaii-Tribune Herald on the recent Mauna Kea lawsuit decision
Mauna Kea Observatories Update
Is it good news that Maui is picked as the site for a new Solar telescope?

0 comments:

welcome to my blog. please write some comment about this article ^_^

Pigliucci and the Islamic Civilization

This is a weekly post by Nidhal Guessoum (see his earlier posts here). Nidhal is an astrophysicist and Professor of Physics at American University of Sharjah.
In my previous post, I reviewed Massimo Pigliucci’s new book about science and non-science (“Nonsense on stilts”), and in passing stated boldly that one of the big gaffes there is the woefully uninformed and brief treatment (dismissal) of the Islamic Civilization’s contribution to science during its history. I also stated that his attempt at tracing the emergence of modern science from older human endeavors failed as he could not show any link between the medieval thinkers, the Renaissance scholars, and the modern scientists. And I promised to come back to at least show the extent of the gaffe(s) committed by Pigliucci.
Just briefly on the emergence of modern science, first our author assumes that its roots are purely western and that they must be found somewhere in the late medieval ages (“What exactly happened during the late Middle Ages”, he asks himself at the start of the chapter titled “From Natural Philosophy to Modern Science”). That is why he focuses on important figures like Albert the Great (ca. 1200-1280) and Thomas Aquinas (ca. 1225 – 1274), the latter’s disciple, even though he states “I do not wholly subscribe to what is sometimes scornfully referred to as ‘the great men theory of history’…”). But in the next paragraph, and without transition, he begins: “I will start my story with Francis Bacon” (1561-1626)…There are no transitional figures or ideas; somehow, the inductive method (largely attributed to Bacon – another hasty assumption) comes from somewhere, directly to or from Bacon’s mind… And there you have it: the emergence of modern science… according to Massimo Pigliucci!
In the chapter previous to that, and having spent many pages reviewing the Greek era (from the pre-Socratics to Ptolemy), Pigliucci remembers that before jumping to the early European universities (“before adjourning”, he says), he needs to deal with “the Arabs”, which he lumps with the Romans and the Medievals in a section he titles “intermezzo” (interlude), one which includes all the Romans (Galen et al.); he devotes a total of two paragraphs to “the Arabs”.
About these “Arabs”, our author tells us simply that “[t]he fact of the matter is, however, that once again we see little in the way of either conceptual advances or even genuine discoveries and much in the way or copying and translating other people’s work”! Well, that’s clear and definitive! On what basis does Pigliucci make this very strong statement? He footnotes David Lindberg (“The Beginnings of Modern Science”) who, he says, “claims that to ‘recount Muslim contributions to the various sciences would require volumes’ ([p.] 175) and yet is unable to cite much in the way of examples, except for disputes among Islamic scholars on detailed aspects of the Ptolemaic description of the solar system.” (Note the dismissive “disputes” and “detailed aspects”… Tell that to George Saliba and other specialists of that part of astronomy’s history.)
So, that’s it: because Lindberg didn’t list the scientific achievements of the Islamic civilization, Pigliucci dismisses it as nothing more than translating and copying “other people’s work”! He does not even know the simple facts and figures that have by now become standard acceptance among people who discuss science, its history, and its philosophy, for example that Algebra was almost single-handedly invented by Muhammad Al-Khwarizmi (ca. 780 – ca. 850), that Optics was revolutionized by Al-Hasan ibn al-Haytham (965-1039), that major (pre-telescopic) observatories were built from early on (Baghdad, 827 CE) to very late (Istanbul 1577 CE), including the hugely important Maragha observatory, where Nasir al-Din al-Tusi (1201 – 1274) did his work, observational and theoretical, which included his “Tusi couple” idea, later adopted by Copernicus (though Kepler, rightfully, got rid of it when he replaced the orbital geometries with ellipses).
Note that I am limiting myself to the most major figures and developments, and only to the fields of Mathematics, Physics, and Astronomy. I don’t even want to get to Medicine (Avicenna/Ibn Sina, Avenzoar/Ibn Zuhr, Ibn al-Nafis, etc.) and other fields…
Let me for a moment, however, focus on Ibn al-Haytham both for the contributions he made to (real) science and for his truly scientific approach (empirical, theoretical, and naturalistic, as Pigliucci concluded, in 2010, is the true hallmark of science, while Ibn al-Haytham practiced it a thousand years before…).
In January 2009, Jim Al-Khalili, a British physicist and award-winning science popularizer of Iraqi origin, presented a three-part TV series on Science and Islam on BBC 4. Here’s how he introduced Ibn al-Haytham to his viewers: “Isaac Newton is the undisputed father of modern optics – or so we are told at school… Yet… in the field of optics, Newton himself stood on the shoulders of a giant who lived 700 years earlier… Without doubt, another great physicist, who is worthy of ranking up alongside Newton, [is] Al-Hasan ibn al-Haytham.” He added: “Ibn al-Haytham is regarded as the father of the modern scientific method… Most people in the West will never have even heard of him.”
While it may be exaggerated to declare Ibn al-Haytham as “the father of the modern scientific method”, there is no doubt that he was one of the greatest scientists of the Islamic era, if not in the history of humanity. Abdelhamid I. Sabra,  an eminent Harvard expert on Ibn al-Haytham, wrote an article on him in 2003 where he described the book Kitab al-Manadhir (known in the west as De Aspectibus, or more simply, Optics) as “monumental… combin[ing] experimental investigations of the behavior of light with inventive geometrical proofs and constant forays into the psychology of visual perception—all systematically tied together to form a coherent alternative to the Euclidean and Ptolemaic theories of ‘visual rays’ issuing from the eye.” If this is not “conceptual advances or even genuine discoveries”, I don’t know what it is.
And last but not least, it is clear that Pigliucci is totally unaware of the important high-level series of letters exchanged between Ibn Sina (980-1037) and Al-Biruni (973-1048) on issues pertaining not only to physics (and I mean to use that term) but to the philosophy of science, or at least the scientific method, where Al-Biruni defends his inductive approach and Avicenna sticks to the “more rigorous” (mathematical and philosophical) deductive method.
It would do well for Pigliucci (and others) to review the (whole) history of science carefully before making such pronouncements. On the Islamic Civilization, there have recently been some very good, general-public books; I would particularly recommend Jeffrey Lyons’s The House of Wisdom and Ehsan Masood’s short and easy Science and Islam, a history.

0 comments:

welcome to my blog. please write some comment about this article ^_^

Movie Trailer: The Nature of Existence

Here is a trailer for a documentary film, The Nature of Existence. It is not playing in theaters near me - and it is hard for me to predict the leanings of the films just from the trailer. On the one hand, I'm afraid that this film may be like the other absolute trash What the Bleep Do We Know. On the other hand, it does seem to contain interviews with some credible physicists and biologists (Susskind, Dawkins, Woosley, etc), and it is directed by Roger Nygard, the director of the very funny and amusing Trekkies (check it out if you haven't seen it). This can potentially be an interesting film and I hope it stays away from crap like quantum spirituality etc. From reading a bit on the movie website, I think I'm cautiously optimistic.

If you have seen it, let me know what you think about it. Here is the trailer:


The Nature of Existence - Original Trailer from Roger Nygard on Vimeo.

0 comments:

welcome to my blog. please write some comment about this article ^_^

Perkongsian : Saya Nak Futur?

Kebelakangan ini semuanya serba tidak kena. Ada sahaja cabaran dan dugaan yang menimpa. Sehingga merasakan pertolongan Allah itu jauh. Sehingga saya rasa tiada lagi gunanya berjuang. Dakwah yang diperjuangkan ini bagai tiada masa hadapannya. Saya hendak putus harap. Lebih baik fokus pada apa yang ada di depan mata. Jadi hamba Allah yang baik, atau sertai gerakan-gerakan dakwah lain yang kelihatan lebih besar. Yang mana lebih menenangkan hati. Namun berharap tidak dapat meninggalkan terus dakwah yang telah menyelamatkan saya ini. Saya terus berfikir.



Tiba-tiba telefon bimbit Sony Ericsson K800i yang separuh nazak ini berbunyi.(Sistem Perisian JAVA tidak boleh dibuka, corrupted, tidak lagi dapat baca Al-Quran dengan HP. Menjadi salah satu penyebab saya agak down..[T_T] )

"Assalamu'alaikum Ya Akhi! Apasa down semacam je chat dengan antum ni? Penat menaip, call je la. Haha~"

(Sebenarnya saya sedang chatting dengan ikhwah seorang ni. Cepatnya dia dapat menangkap ke'murungan' saya. Mungkin itulah kuasa ukhuwah.)

"Wa'alaikumussalam Warahmatullah Wabarokatuh...ana memang tengah down pun sebenarnya."

"Hah, kenapa pula ni?"

"Banyak sebab. Ujian datang bertimpa-timpa. Mulanya rasa susah nak berdakwah dah sekarang ni. Main tarik tali dengan jemaah-jemaah lain. Mereka pun ramai target mad'u yang ana cuba tajmik. Lepastu, mad'u-mad'u yang ana cuba kumpul yang dah sikit ni pun semakin sikit."

"...."

"Kemudiannya, ikhwah-ikhwah lain yang ditugaskan untuk sama-sama bertugas selama ni tak banyak membantu. Yang datang pun sekejap-sekejap je. Ada yang tak dapat dihubungi langsung. Ana rasa ana buat kerja sorang-sorang je ni. Memang rasa jauh betul daripada pertolongan Allah."

"Ada lagi ke akh? Kesian antum."

"Itu je la kut."

"Ya Ikhwah Fillah, ini semuanya ujian daripada Allah. Ana faham antum mungkin dah fikir macam-macam dah sekarang ni, lagi-lagi bila bersendirian. Syaitan mesti dah bisik macam-macam kat telinga antum sekarang ni.

(Memang betul! Aku dah tak mahu berjuang lagi!)

"Tapi akhi, ingatlah ini ujian daripada Allah. Kita memang lemah sekarang ni. Pertolongan Allah memang masih belum datang, tetapi itu tak bermakna pertolonganNya tidak akan kunjung tiba. Mungkin ada kesilapan dalam urusan perjuangan kita yang menjadi hijab daripada pertolongan Allah. Ana nak test antum sikit ye, antum masih ikhlas ke tak ni dalam berdakwah?"

(Ikhlas...Ya-Allah...apa niat aku selama ni.)

"...."

"Sebab ana tengok, antum down sebab tak dapat kumpul orang, tak dapat bantuan ikhwah lain dan antum rasa keseorangan. Kita tak perlu bilangan yang ramai akh. Siapa yang datang, biarpun 3 orang, bersyukurlah. Yang lepas, lepas. Kita sepatutnya tidak terpengaruh dengan bilangan mad'u. Itu bukan ukuran kejayaan yang hakiki. Yang paling penting kebersihan niat dan kesungguhan usaha. Yakinlah, Allah bersama dengan orang-orang yang ikhlas lagi sabar."

Terasa bagaikan ada hawa dingin yang mengalir dari ubun-ubun menjalar ke pangkal hati. Mata mulai merembeskan cecair khasnya.

"Antum banyakkan beristighfar akh, banyakkan baca Al-Quran. Setiap manusia pasti ada masa lelahnya. Pasti ada saat lemahnya. Tapi jangan pernah terbawa-bawa oleh perasaan. Kuatkan diri dengan segala apa yang kita ada. Jangan risau, ana ada. Petang nanti kita jumpa kita bincang sama-sama strategi dakwah."

"Insya-Allah. Jazakallah khair akhi."

"Wa iyya kum. Kuatkan mujahadah. Allah pasti bersama kita. Assalamu'alaikum Warahmatullah Wabarokatuh."

"Insya-Allah. Wa'alaikumussalam Warahmatullah Wabarokatuh."

Dan mata terus mengalirkan airnya. Meluncur laju.

Ya, itulah jawapannya. Ikhlas, ikhlas dan ikhlas. Serta mengharapkan bantuan daripada Allah semata-mata.

"Allah pasti bersama kita..."


Insya-Allah! Saya akan terus bersihkan niat. Jazakumullah Khairan Kastiro Ya Akhi...Uhibbukumfillah!
Sungguh, aku akan terus mencintaimu, mencintai dakwah, mencintai Allah serta Rasulnya selagi hayat dikandung badan.

Saya nak futur?
Tidak!


~End Of Post~


0 comments:

welcome to my blog. please write some comment about this article ^_^

Obama's science initiative in Indonesia

I have posted about Obama administration's efforts for scientific outreach to the Muslim world before (see Obama's Science Envoys to the Muslim World and Obama's Science Outreach to the Muslim World). I think this is a positive step with potential long-term benefits. One of the first efforts in this regard is taking place in Indonesia and it gives an idea of potential collaborations. From Science:
In its first international mission, the U.S. research vessel Okeanos Explorer early this summer will team up with an Indonesian vessel, the Baruna Jaya IV, to probe the ecological hotbed.
The expedition ushers in a new era in science cooperation between Indonesia and the United States. The two countries have just inked their first S&T agreement, which is now awaiting ratification by Indonesia President Susilo Bambang Yudhoyono. And two high-profile initiatives are in the works. In the coming weeks, the United States is expected to unveil an extensive education package, including university partnerships and dedicated funds for S&T collaboration; funding for the package could top $150 million. It will also tap Indonesia to host a regional center for climate change, one of the centers of excellence for the Muslim world that U.S. President Barack Obama promised to establish in a landmark speech in Cairo last year. (Both initiatives were to be announced this month during Obama's planned visit to Indonesia, which was postponed.)
Other signs of a closer relationship include an annual Frontiers of Science meeting that the Indonesian Academy of Sciences (AIPI) and the U.S. National Academies intend to launch next year to spark collaborations between top young scientists. And an Indonesian-U.S. team is now drilling ice cores from a tropical glacier (Science, 28 May, p. 1084). "This whole spectrum of activities will strengthen ties between our two countries," says Jason Rao, a senior policy analyst at the White House's Office of Science and Technology Policy.
Perhaps a better sign is structural help in the formation of a national science organization:

Yudhoyono spoke of Indonesia's own efforts to bolster science in a January speech to AIPI, urging researchers to take risks and "be much more open-minded and more progressive" than in the past. He returned to the theme in a meeting in Jakarta last month with Bruce Alberts, Science's editor-in-chief and one of three science envoys appointed by Obama to explore collaborations with Muslim-majority countries. Discussions are also under way on creating a merit-based agency similar to the U.S. National Science Foundation (NSF). After years of stagnation, researchers here sense "the beginning of a renaissance," says medicinal chemist Umar Anggara Jenie, chair of the Indonesian Institute of Sciences (LIPI) in Jakarta.
The United States is playing a critical supporting role in this revival. In his speech, Yudhoyono cited cooperation in technology and education as key elements of a "new strategic partnership" between the two countries. Another impetus is Indonesia's problem with homegrown terrorists. In Cairo, Obama vowed to support technological development in Muslim-majority countries. "We understand his intention to bridge Islamic civilization and the West. Science is the best way to do this," says AIPI President Sangkot Marzuki, director of the Eijkman Institute for Molecular Biology (EIMB).
And you can add science education to the agenda as well and its great to see National Science Resource Center getting involved in it:
A more fundamental concern is science education. The government intends to triple university enrollment in natural sciences to 12% by 2014. But students are ill-prepared: Primary school science education is woeful, researchers contend. Plans are under way to bring Indonesian educators to a workshop on inquiry science for children next month at the National Science Resource Center in Washington, D.C., run by the National Academies and the Smithsonian Institution. "The hope is to initiate an impressive program of science education in one or two carefully selected Indonesian school districts," says Alberts.
I'm quite impressed by the breadth of involvement here. It wasn't clear earlier on, what kind of activities will be included in these scientific collaborations. But if we take this Indonesian example as a model, then we are looking at a potentially deep and fruitful collaboration beyond simple political rhetoric between the US and at least some of the Muslim countries.

Read the full article here.

0 comments:

welcome to my blog. please write some comment about this article ^_^

Cultural Performance


I felt confused about what should we perform at the cultural events in US. Amanda informed me that each country only has 5 minutes to dance, sing or do other cultural acts. At first I thought about a dance performing. I have been learning a traditional dance since I came back from the PDO. If we have enough time together perhaps we can practice this dance. But I got a bit problem, the "Sanggar"

0 comments:

welcome to my blog. please write some comment about this article ^_^

Plato's cave in clay

This post is dedicated to Laura Sizer. I co-teach classes on science & religion with her (one on the theme of Origins and one on The History and Philosophy of Science & Religion). Every time we teach, she has to explain Plato's allegory of the cave from The Republic. Well, here is a very cool claymation version of the allegory - and I think it does a great job with the visuals (and audio as well - love the camel!). If you want to know more about the meaning of the allegory, check out this excellent episode of Philosophy Bites on the subject. (tip from Open Culture)


0 comments:

welcome to my blog. please write some comment about this article ^_^

“Nonsense on Stilts” by Massimo Pigliucci – a review


This is a weekly post by Nidhal Guessoum (see his earlier posts here). Nidhal is an astrophysicist and Professor of Physics at American University of Sharjah.
Massimo Pigliucci, an evolutionary biologist who now teaches philosophy at the City University of New York, has just published a book titled “Nonsense on stilts”, with the more telling subtitle “How to tell science from bunk”. It was published by the University of Chicago Press, so this provides it with some backing. The aim of the book is to determine the boundary separating science from non-science. This is known among philosophers of science as the “demarcation problem”, famously addressed by Karl Popper. Pigliucci, however, promptly tells us that not only will it be difficult to find a clear demarcation line between science and “bunk”, we will quickly identify gray zones of “almost science” and “pseudo-science”.
This is a very interesting book in many regards, and I’ll try to say a few words about several, though not all, of its main themes; in fact, I will soon come back and devote a post to one of the (few) glaring gaffes in the book, namely its awful (hasty and woefully uninformed) discussion of the Islamic civilization’s contribution in the history of science.
Pigliucci first explains the enigmatic meaning of his book’s title on page 4: it is an expression used by the philosopher Jeremy Bantham to mean “a really, really tall order of nonsense”… Thank God there was a clarifying subtitle. And thank God Pigliucci is somewhat well-known in the blogosphere and in some “skeptic” (non-believing) publications, so his book got noticed and talked about, which made me decide to get a copy and read it quickly. Otherwise I and many others would never have noticed his very good book. Indeed, it provides for a very enjoyable read: Pigliucci is spirited and witty, he pulls no punches; in fact, one of the (mildly) annoying (and a bit surprising) aspects of the book is the vocabulary he uses when criticizing his opponents (who range from the creationists to the postmodernists, all the way to the famous “anarchist” philosopher Paul Feyerabend), words like “pompously”, “ranting”, etc. Another critique I might formulate while I’m at it, is that the book spreads itself a bit too thin at times, often getting sidetracked to stories and subtopics that are either well-known or only marginally relevant.
The book is divided into roughly three parts: (1) several chapters dealing with Science (hard and soft), “almost science”, “pseudo-science”, and “non-science”; (2) a discussion of how modern Science came about; (3) a critical review of the contemporary debates about Science (the “science wars” with postmodernists and “denialists”, of global warming for instance). The first part is the most interesting, well written, and almost right on target; the second part is the weakest, for we learn essentially nothing, as Pigliucci jumps from Albert the Great (~1200-1280) to Francis Bacon (1561-1626); the third part is all right and quite relevant, though it’s a battle that has been fought at length elsewhere (e.g. the Sokal Affair).
The main part is the careful examination of the “demarcation problem”: what makes a subject part of science or outside of its methodology and area of respectable investigation? The good thing about this part is that Pigliucci shows us very interesting cases and explains why it’s sometimes difficult to bestow or deny the Science label on them, cases such as SETI (the search for extra-terrestrial intelligence), Evolutionary Psychology, and even History (yes, history, which, Pigliucci shows, is in the process of being pulled into the bona fide Science domain, though these attempts may or may not succeed in the end). And why is SETI, for example, not clearly within the Science purview? Because it is clear that one could never answer the SETI question negatively, since no amount of negative data will amount to a definite falsification of the research question.
Ah, falsification – a very important word and concept! This is what Popper introduced when he famously defined for us what separates science subjects from non-science. To him, and to most scientists since, a topic falls within the Science domain if it can make predictions that can potentially be “falsified”, i.e. proven to be false. A statement that can never be shown to be false is not a scientific one. Interestingly, Pigliucci tells us early on that this “demarcation” criterion is not satisfactory and that developments in the philosophy of science have since made it quite obsolete. However, I believe he is mixing up two different aspects of Popper’s work, two aspects which unfortunately are both usually referred to as “falsification” or “falsificationism”: the first is the simple (“descriptive”) criterion I just mentioned; the other is Popper’s (“prescriptive”) proposition that Science (and scientists) should adopt “falsificationism” as a general approach in their research, namely by coming up with or picking propositions that they can show to be false, thus pruning the subject from one erroneous idea after another, until the correct one is revealed (the last one standing, so to speak). Pigliucci and others show(ed) that this approach cannot work (basically, a hypothesis cannot be rejected just because some data seems to contradict it), and in this he is correct. But this is not the same as the demarcation criterion by which we distinguish science from non-science, and to shed doubt on the criterion because Popper’s “falsificationism” often does not work, only confuses the issue. In fact, as I was reading the book, I could find many statements where our author implicitly or explicitly adopts Popper’s criterion to distinguish “science from bunk”.
Still this first part is quite excellent, as one is continually challenged to find the flaws (and the surprising strengths) in fields like Astrology, Ufology, and Paranormality, in one’s attempt to figure out exactly what makes (real) science. I wish the other parts of the book were nearly as good…
So, to make a long story short, after a long sinuous treatment and several detours and “intermezzos”, what result does Pigliucci reach in his investigation of “How to tell science from bunk”? He does well to summarize his findings for us in a short concluding chapter. First, he reminds us that there is a spectrum of sciences (ranging from soft to hard, more or less complex, involving human factors or not), and it is simplistic and naïve to believe that “hard” fields are more scientific or even more successful than “soft” ones. Now, what all scientific investigations have in common, according to our philosopher, is three elements: naturalism, theory, and empiricism. Naturalism is the insistence that all explanations be confined to natural causes and factors. Theory is the requirement that there be some explanation proposed of the explored phenomenon (and this is where Astrology fails, in particular). And empiricism is the necessity for any proposed explanation to be confirmed by the experimental/observational (empirical) data.
Pigliucci is also very honest in admitting the human factor in the scientific enterprise. This is a very sticky issue, and one which has led to major troubles (the postmodernists taking it to the extreme of claiming science to be a “relative” construct), but here too he provides a very good review of the topic and reaches reasoned conclusions, such as the “perspectivist” solution, which consists in presenting science as simultaneously an objective and subjective perception of the world, just like colors are a human perception with an objective basis (specific wavelengths). And finally, the zone separating science from bunk is a gray one, with fields in the middle moving either toward the solid land or the deep waters depending on the progress (or lack thereof) being made in each case…

0 comments:

welcome to my blog. please write some comment about this article ^_^

What is a startup?

I think most people have a fairly specific image that gets conjured up when they hear the word startup. Maybe it’s the “two guys in a garage” made famous by HP, or the idea of Jobs and Wozniack walking barefoot and shaggy through the Homebrew Computer Club. Maybe it’s the more recent wunderkinds like Zuckerberg or Brin and Page. What all of these pictures have in common is a narrative that goes something like this: scrappy outsiders, possessed of a unique genius, took outrageous risks and worked incomprehensible hours to beat the odds.

But this cinematic view of entrepreneurs is flawed in many ways. Let’s start with the most basic. It leads people to mistakenly believe that any time they see two guys in a garage attempting the impossible, that’s a startup. Wrong. It also causes them to miss the numerous other kinds of startups that appear in less-glamorous settings: inside enterprises, non-profits, and even governments. And because both small businesses and startups have a high mortality rate, sometimes these images lead us to believe that any small business is a startup. Wrong again.

So let’s begin with a definition of a startup that captures its essential nature, and tries to leave behind the specific associations of the most famous startups.

A startup is a human institution designed to deliver a new product or service under conditions of extreme uncertainty.

Let’s take each of these pieces in turn. First, I want to emphasize the human institution aspect, because this is completely lost in the “two guys in a garage” story. The word institution connotes bureaucracy, process, even lethargy. How can that be part of a startup? Yet, the real stories of successful startups are full of activities that can rightly be called institution-building: hiring creative employees, coordinating their activities, and creating a company culture that delivers results. Although some startups may approach these activities in radical ways, they are nonetheless key ingredients in their success.

Isn’t the word human redundant in this definition? What other kinds of institutions are there, anyway? And yet, we so often loose sight of the fact that startups are not their products, their technological breakthroughs, or even their data. Even for companies that essentially have only one product, the value the company creates is located not in the product itself but with the people and their organization who built it. To see proof of this, simply observe the results of the large majorities of corporate acquisitions of startups. In most cases, essential aspects of the startup are lost, even when the product, its brand, and even its employment contracts are preserved. A startup is greater than the sum of its parts; it is an acutely human enterprise.

And yet the newness of a startup’s product or service is also a key part of the definition. This is a tricky part of the definition, too. I prefer to take the most expansive possible definition of product, one that encompasses any source of value for a set of people who voluntarily choose to become customers. This is equally true of a packaged good in a grocery store, an ecommerce website, a non-profit social service or a variety of government programs. In every case, the organization is dedicated to uncovering a new source of value for customers, and cares about the actual impact of its work on those customers (by contrast, a monopoly or true bureaucracy generally doesn’t care and only seeks to perpetuate itself).

It’s also important that we’re talking innovation, but this should also be understood broadly. Even the most radical new inventions always build upon previous technology. Many startups don’t innovate at all in the product dimension, but use other kinds of innovation: repurposing an existing technology for a new use, devising a new business model that unlocks value that was previously hidden, or even simply bringing a product or service to a new location or set of customers previously underserved. In all of these cases, innovation is at the heart of the company’s success.

Because innovation is inherently risky, there may be outsized economic returns for startups that are able to harness the risk in a new way – but this is not an essential part of the startup character. The real question is: “what is the degree of innovation that this business proposes to accomplish?”

There is one last important part of this definition: the context in which the innovation happens. Most businesses – large and small alike – are typically excluded by this context. Startups are designed to confront situations of extreme uncertainty. To open up a new business that is an exact clone of an existing business, all the way down to the business model, pricing, target customer, and specific product may, under many circumstances, be an attractive economic investment. But it is not a startup, because its success depends only on decent execution – so much so that this success can be modeled with high accuracy. This is why so many small businesses can be financed with simple bank loans; the level of risk and uncertainty is well enough understood that a reasonably intelligent loan officer can assess its prospects.

Thus, the land of startups is a unique place, where the risks themselves are unknown. Contrast this with other high-risk situations, like buying a high-risk stock. Although the specific payoff of a specific risky stock is not known, investing in many such stocks can be modeled accurately. Thus a decent financial advisor can give you a reasonably accurate long-term expected return for a set of risky stocks. When the “risk premium” is known, we are not in startup land. In fact, when viewed in retrospect, most startups appear like no-brainers. Probably the most famous example today is Google: how did we ever live without it? Building that particular product was not nearly has risky as it seemed at the time; in fact, I think it is a reasonable inference to say that it was almost guaranteed to succeed. It just wasn’t possible for anyone to know that ahead of time.

Startups are designed for the situations that cannot be modeled, are not clear-cut, and where the risk is not necessarily large – it’s just not yet known. I emphasize this point because it is necessary to motivate large amounts of the theory of the lean startup. Fundamentally, the lean startup is a methodology for coping with uncertainty and unknowns with agility, poise, and ruthless efficiency. It is a completely different experience from the equally hard job of executing in a traditional kind of business, and my goal is not to disparage those other practitioners – after all, most startups aspire to become non-startups someday.

Still, these differences matter, because the “best practices” that are learned in other contexts do not transplant well into the startup soil. In fact the most spectacular startup failures result when people were in a startup situation but failed to recognize it, or failed to recognize what it meant for their behavior.

This definition is also important for what it excludes. Notice that it says nothing about the size of the company involved. Big companies often fail because they find themselves in a startup situation but are unable to reorient in time to cope with this situation; this specific pathology is explored in The Innovator’s Dilemma. This kind of crisis can be precipitated by many external factors: macroeconomic changes, trade policy, technological change, or even cultural shifts. But most often, the entrant of a startup into a previously calm market precipitates this kind of crisis. This has significant implications for general managers in enterprise, about which you can read more at HBR: Is Entrepreneurship a Management Science?

0 comments:

welcome to my blog. please write some comment about this article ^_^

Paris Zodiac and science & religion

Nature has a review (you may need subscription to access it) of an interesting book about an Egyptian artifact that ignited an interesting debate about science & religion in the early 19th century. The title of the book is The Zodiac of Paris: How an Improbable Controversy over an Ancient Egyptian Artifact Provoked a Modern Debate Between Religion and Science by Jed Z. Buchwald and Diane Greco Josefowicz. The book sounds really interesting, though I'm a little cautious about the ambitious claim in the title about science & religion:
Compared with other ancient astronomical artefacts, the Egyptian carving known as the Dendera zodiac has been largely forgotten. Yet, two centuries ago, it was as celebrated as the just-discovered Rosetta Stone. The zodiac relief is now the subject of a groundbreaking study by historians of science Jed Buchwald and Diane Greco Josefowicz.
After Napoleon Bonaparte's invasion of Egypt in 1798, the elaborate panel was encountered on the ceiling of a temple at Dendera, north of ancient Thebes, now Luxor. The main part of the zodiac was removed by an enterprising, if unscrupulous, French engineer and shipped off to Paris in 1821, where it resides today at the Louvre Museum.
For decades after its discovery, the dating of the 'zodiac of Paris' was contested. Leading French scientists bitterly disagreed about the artefact's age on the basis of their astronomical calculations, including physicist Jean-Baptiste Biot and mathematician Joseph Fourier, who had accompanied Napoleon to Egypt. So too did other public figures, from sympathizers of the French revolution to supporters of Napoleon and his royalist successors.  
Key to determining the zodiac's age was the historical position of stars in the depicted ancient sky. Fourier and others estimated that the object, and thus Egyptian civilization, was much older than the age permitted by the biblical account of human creation — as much as 15,000 years BC. Competing experts suggested that the zodiac was merely Greek or Roman, only 2,000 years old, post-dating the Egyptian pharaohs.
Ah. So the age of the Zodiac becomes the central controversy:
The zodiac became a cause célèbre for left-wing atheists and the right-wing devout. A vaudeville theatre production, Le Zodiaque de Paris, was staged in 1822 even though it had been censored by the French government. Actors played the signs of the zodiac accompanied by a chorus of wailing mummies to satirize the popular, official and scholarly reactions to the antique.
In the end, the Gordian knot was cut not by the quarrelling scientists but by a young philologist, Jean-François Champollion, who deciphered the Egyptian hieroglyphs in 1822–24. Studying a drawing of a surrounding part of the zodiac that had been left behind in the Dendera temple, he translated the meaning of a hieroglyphic cartouche within it as autocrator, a Graeco-Roman title. The Catholic Church was delighted that this agreed with their view and the Pope offered to make Champollion a cardinal — much to his disgust, given that he was an anti-royalist religious sceptic.
Ironically, the drawing was erroneous: when Champollion visited Egypt in 1828 he saw that the crucial sketch did not match the in situ Dendera cartouche, which was empty of hieroglyphs. But different evidence from the site confirmed that the Roman dating was correct. The modern date is the first century BC, which is in the time of Cleopatra, who is depicted in the temple. Yet the church's glee at this later date was not to last — other hieroglyphic inscriptions from the Valley of the Kings showed, to the satisfaction of Champollion, that Egyptian civilization went back at least 5,000 years. The zodiac did not support creationism after all.
Okay - this bit is interesting. But I'm still not sure how big was this an issue for science & religion in early 19th century France. After all, around the same time, Cuvier is talking about major extinctions and Lamarck has brought his version of evolutionary theory. But back to the review:
The Zodiac of Paris provides an intriguing insight into a tumultuous era. The story was hardly a triumph for “the calculating savants” over “their pious antagonists”, say Buchwald and Josefowicz — astronomy alone did not establish an age. Champollion eventually succeeded in understanding the zodiac because his decipherment embraced both the logic of science, the ambiguity of the humanities and the exigency of ancient Egyptian religion.
Hey - why take an indirect swipe at astronomy and "the calculating savants" at the end? After all astronomers did establish the age of the Sun and the age of the universe - all by themselves - thank you very much. Okay - may be I should not take this personally :)

Read the full review here.

0 comments:

welcome to my blog. please write some comment about this article ^_^

2 Bulan Lagi? ...


Next time you eat a grape...

Well, the mini blog-break is over. But in the mean time I did discover that we have to show a bit more respect towards grapes (and don't panic if you hear a grape talking back at you). Here is the current estimate of genes, and it seems that we humans are somewhere between a grape and a chicken:


Figure: Gene counts in a variety of species. Viruses, the simplest living entities, have only a handful of genes but are exquisitely well adapted to their environments. Bacteria such as Escherichia coli have a few thousand genes, and multicellular plants and animals have two to ten times more. Beyond these simple divisions, the number of genes in a species bears little relation to its size or to intuitive measures of complexity. The chicken and grape gene counts shown here are based on draft genomes [50,51] and may be revised substantially in the future. 

But it is reassuring that our dominion over chickens extends into the genome. Read the full paper here. And while talking about chickens, check out this story of Mike the headless chicken from Barbara King's blog (also see here for the full story).

0 comments:

welcome to my blog. please write some comment about this article ^_^

Perkongsian : Maaf


Assalamu'alaikum WBT...

Maaf diucapkan kepada semua, terutama yang tertunggu-tunggu akan pengemaskinian daripada saya untuk Shoutul Ikhwah ini. Saya masih cuba membiasakan diri dengan suasana latihan industri yang baru sahaja mengakhiri minggu keduanya. Masih ada 30 minggu yang berbaki. Cabaran dan dugaan yang dialami agak menekan jiwa, namun alhamdulillah, dengan izin Allah rentak dan irama kehidupan sudah mulai dikenalpasti dan akan mula digubah, insya-Allah.

Memang banyak yang ingin dikongsikan, namun saya masih perlu mencari 'mood' dan keyakinan. Insya-Allah akan ada beberapa cerpen yang menyusul. Mohon didoakan terus.

Doakan saya terus tabah dan mampu menghadapi cabaran ruangan yang serba baru ini. Semoga kita terus menjadi muslim yang tetap istiqomah memberi untuk agama Allah yang tercinta ini. Amiin.

~End Of Post~

0 comments:

welcome to my blog. please write some comment about this article ^_^

No departments

Big companies have departments. Startups are companies. Startups aspire to become big companies. Therefore, startups should have departments. Right?

Why do companies have departments? There are a lot of reasons: ladder of advancement, sharing of best practices, functional specialization. Each of these benefits also exists in startups, which is why most startups are also organized in departments. But I have come to believe that because of the unique context of startup land, the payoff is a lot smaller than it is for larger companies. Meanwhile the drawbacks of functional departments can cause real and lasting harm.

I once worked at a startup with an exceptional functional department system. The leaders of each department were world-class experts in their respective fields. The team hired only the best and the brightest. Looking back after a few years, it’s evident that many of the people who worked in these departments have gone on to do incredible things in industry. They are leaders, visionaries, founders and managers having tremendous success.

Yet talent organized improperly can lead to failure. I was an engineer on the engineering team. We had to work closely with artists on an art team. We sat in different parts of the building, ate lunch separately, spoke a different specialized jargon, and generally didn’t understand each other. According to the Waterfall methodology in which we worked, this shouldn’t have been a problem. After all, we rarely had to work on the same project at the same time. The art team would often be involved in the specification phase of a new feature, since they were responsible for the look-and-feel of the product. Then we’d build the feature, which would often include tools that were intended for the art team to use to build the parts of the product that they were responsible for (in video game parlance, this is the “art path” that allows artists to get their work into the production product).

Sure, some communication was necessary, especially as artists had to be trained on new tools periodically. But according to the theory, this should have been covered by the various specs and documentation we were rigorous about producing.

If anyone has ever worked in an environment like this, you’ll probably be able to imagine the things that can go wrong. For one, the engineers consider the artists stupid; the artists consider the engineers arrogant. Not a lot of trust builds up that can be used when real disagreements emerge. Instead, there’s a positive feedback loop of bad feelings. And like feedback on a simple microphone sound system, this would occasionally boil over into screeching.

I remember one such meeting vividly. I was the junior guy on a project team; I was called in to do some technical due diligence for reasons that were obscure to me, because the team already had much more senior engineers assigned to it. I was invited to a feature decision meeting, where the team was closing in on a detailed spec. The meeting was tense. The artists on the team had called in the big guns, and VP-level folks were there to explain the importance of certain aspects of the visual design that threatened to be cut. I eventually realized that I was there as part of the same plan – the art team has specifically requested someone technical but unimportant to be able to render opinions that might undermine their more senior opposition. Not to be outdone, the technologists on the team had also brought their big guns, and the meeting was packed with employees of every level – from VP’s all the way down to me.

As the meeting progressed, the temperature kept rising. At first, I couldn’t even follow the recriminations back-and-forth. Eventually, though, I realized what was at issue: the art team was insisting that the UI for this feature have rounded corners. Incredibly, they were willing to bring the company to a standstill to protest that this was an absolutely essential feature. Even more surprisingly, the engineering team was equally vocal about their contention that adding rounded corners would add weeks of development time to the project, which would have pushed it out way past its hard deadline, effectively killing it. On the surface, this was a ludicrous dispute – both sides were willing to kill the project rather than proceed with (or without) a minor UI tweak. Were they just crazy?

I don’t think so. This meeting was just the latest in a series of escalating skirmishes that had taken place over many months. The feedback loop looked something like this. The art team would create a spec for a feature, detailing the UI as best they could. The engineering team would then build that feature, mimicking the UI as close as they could using the current primitives supported by the system. When the art team would review the final product, they were inevitably outraged – it deviated from the spec in ways they considered major. So there would be a lot of scope negotiation at the very end, when it is most expensive. Sometimes, the art team would win the argument, and the engineers would pull a few all-nighters to make them happy, but feeling betrayed at the new additions to the spec. Sometimes the engineering team would win, and the art team would have to accept (and be held responsible) for a feature that didn’t really work the way they wanted, feeling betrayed at the violation of their agreement.

As an isolated incident, this wouldn’t be a big deal. But scope negotiations between departments are an example of an “iterated prisoner’s dilemma” situation, where the same parties repeatedly negotiate, and rely on their previous experience to inform their choices in the current round. Unfortunately, the equilibrium in this particular setup has one overriding outcome: longer and more detailed specs. Here’s why.

The art team feels burned that they didn’t get what they asked for. Last time, the engineers weaseled out of their commitments by point out areas where the spec didn’t specify what was really important to the artists. So this time, they are going to spell out what’s important in even greater detail, to leave less wiggle room.

The engineering team feels burned too, and feels that they were blamed for deficiencies in the spec as if it was their fault that the technology doesn’t really support what the artists want to do. So they react in two ways. First, they actively encourage a more detailed spec, and are more aggressive about pointing out possible inconsistencies. This forces the art team to make concrete decisions about stuff they don’t really care about. Second, the engineering team starts to pad their estimates, knowing that each feature in the spec is not really done when they think it’s done – there’s going to be inevitable scope creep from the art team when they finally see the final result.

What are the consequences of this more detailed spec? For one, it takes a lot longer to create, meaning that the projects themselves get larger in order to rationalize the increased investment in planning. Second, the extra detail obscures the artists’ original intent in specifying the feature, so the engineers are even more likely to miss the big picture and build the wrong things. And lastly, it removes the engineering team’s ability to find breakthrough solutions that might deliver most of the value at a fraction of the cost. They can’t use any discretion for fear of breaking the spec’s contract, even if the changes would probably go unnoticed or even be in the company’s best interests. The lack of trust (and the procedure of the Waterfall methodology) makes it very difficult to ask for clarification or changes in the spec while the implementation is underway.

This feedback is a nasty trap, and it’s just how this room full of otherwise rational adults wound up in a screaming match about rounded corners. It was painful to watch. Now, part of the reason I remember this particular meeting so well is that I wound up doing something considered really radical at the time. I suggested that we change the underlying architecture of our UI system so that the artists would be able to build their own UI pieces themselves and then integrate them into the product without requiring new code every time. It took an incredible amount of politicking and arm-twisted, but I did eventually get the teams to agree to that solution. I’m proud of that contribution, but the reason I tell that part of the story is not to show off, but rather to be able to tell you what happened next. Although both teams got something valuable about the new system, neither was very happy. I had successfully defused the situation, and by reducing the feedback loop between the artists spec and its implementation, I was able to help them realize their goals better. As a technical fix, it was brilliant. As a solution to the underlying problem, it was useless.

Neither side liked me very much for having "fixed" their problem. In particular, the artists felt like I had created a lot more work for them – they were used to having other people grapple with implementation details for them, and now they had to do it themselves. They either had to hire a developer onto the art team itself (unthinkable) or learn those development skills themselves (which was, to be fair, really hard). The engineering team wasn’t happy either. Creating this new architecture was a fair bit of work, and they couldn’t shake the feeling that I had basically sided with the enemy, giving them tools that would require a lot of engineering support but basically deprive the engineering team of any credit for the resulting features.

I’ve now come to believe that this confrontation was a direct result of the partition between the departments in this company, and that rather than seek technical solutions to the disagreement, I would have been better off working to break down those walls.

Let me tell one more story from that same company. I mentioned before the art path, the set of tools the engineering team was required to build and maintain for the art team to be able to create content. Because the art team was considered an internal customer (and “friendly” to boot), we didn’t waste a lot of time making the tools easy to use. Instead, we spent time making sure the exact behavior of the tools were well documented – by engineers, naturally.

This led to some pretty bizarre situations. One time I remember in particular, an engineer fixed a bug that was causing artists’ creations to render in our 3D environment with a skewed rotation. The details aren’t important, but it turned out that under certain relatively common conditions, the objects would come out completely upside-down.

I’m sure this engineer was expecting to be treated as a hero by the art team, since he had just fixed a major bug. But instead he was reviled. Why? The artists had known about this bug for ages, but had just assumed it was a natural part of the system. They had learned that the best way to solve problems is through trial-and-error, doing whatever it takes to get the object to look right. So sometimes the object would come out upside-down, sometimes not. When it did, they’d just invert their original work so that after the upside-down transformation, it looked right. Sure, there was a lot of randomness in whether they would need to take this extra step, but this was nothing unusual. From their point of view, the tools were full of meaningless jargon and bizarre incantations that resulted in nearly random behavior. This bug was not even considered a major one, since at least it had a deterministic fix.

But now you can see what happened when the bug was fixed. A large, but mostly random, sample of objects started rendering upside-down! This required either that we leave the bug in place, or that the art team go back and rework all those thousands of upside-down objects. Neither solution is particularly alluring.

Again, this led to lots of mutual recriminations. Why didn’t the art team come to the engineers and tell them of this bug as soon as it manifested? Why aren’t they smart enough to figure out what the tools actually do? On the other side, why don’t the engineers just deliver tools that work like they’re supposed to? Other more established companies have tools that are intuitive to use, why can’t we?

The solution to this problem is actually really simple. Just create an art path team, composed of some artists and engineers. Force them to live and work in the same physical space, force the engineers to actually do some art production, and force the artists to actually learn what the technical limits of the tools are. As the team gets traction, simply rotate members from both departments through this team, so that the knowledge they gain is eventually diffused through both organizations. And hold the leaders of that team – artists and engineers alike – accountable for a set of clear goals for the tools that are important to the company.

There’s nothing intrinsically difficult about this problem, just as their was nothing intrinsically difficult with the “rounded corners” problem I discussed earlier. The barrier to doing the right thing is the entrenched ideas originating from departments. Who would lead this team? Who would they report to? How would we ensure that the team was faithful to the best practices of both the art team and the engineering team? And plus, do we really want to be cross-training engineers in art and artists in engineering? Isn’t that a waste of time? After all, both teams are already too busy, how can we afford to pull people off and waste time?

This is another variation of the time/quality/money fallacy – the very quality problems that a team like this would address are currently wasting time and causing the team to be “too busy” to invest in the solution. So: enough with functional departments at startups. Let's start holding people accountable solely for their contribution to the only thing that matters: validated learning about customers.

0 comments:

welcome to my blog. please write some comment about this article ^_^

Blood samples back to Yanomamo

The name of Yanomamo is often associated with controversies in anthropology (see here and here). But for a change, here is a positive step being taken to repair some of the relations with the Yanomamo tribe: Researchers will return 40-year old blood sample taken from the tribe members. From Science:
Now, in an agreement being worked out by Brazil, he and others are pulling tissue samples out of storage and preparing to have them shipped back to the jungle.
Weiss says he accepted the vials years ago as a favor to his postdoctoral adviser James Neel, who was retiring and wanted them preserved. Along with cultural anthropologist Napoleon Chagnon, Neel collected the samples from the Yanomamö in Brazil and Venezuela during fieldwork in the 1960s and early 1970s, and they've been stored since then in labs around the United States. (Neel died in 2000.) Weiss and others will be releasing parts of their collections to the Brazilian Embassy in Washington, D.C., which in turn will escort them back to Brazil and the Yanomamö tribe. Venezuela has not asked for samples taken from its Yanomamö tribes, Weiss says.
The return marks at least the third time that an indigenous group has retrieved DNA or other tissue from scientists, suggesting a shifting landscape in genetics studies on indigenous people.
There are still some interesting problems associated with the return:
Researchers and diplomats alike want to ensure that the samples are safe and free of contaminants. That's easier said than done. The usual approach—heating material at very high temperatures—would cause the vials to explode. A suggestion to sterilize some samples with bleach was rejected, says Karen Pitt, special assistant for biological resources at the National Cancer Institute (NCI), which holds 477 vials. NCI is investigating the possibility of irradiating them. "We'd like to accelerate this," says Pitt.
Still, I think this effort is a step in the right direction. Yes, there was no "Informed Consent" procedure forty years ago, but now we do have stricter procedures in place - so why not follow them more consistently. Just a few months ago, I had posted about the contentious DNA research involving the Havasupai tribe. However, in general, it seems that scientists are becoming more sensitive to issues involving indigenous tribes and is pointed out in the Science article:
Scientists are increasingly trying to accommodate demands from indigenous groups. Three years ago, the Canadian Institutes of Health Research in Ottawa released new recommendations for aboriginal research requesting, among other things, that research be of benefit to the community, that researchers translate their publications into the language of the community, and that researchers get consent before transferring samples to a colleague.
"If you have a sample in your lab, you have been loaned it, you haven't been given it," says Laura Arbour, a medical geneticist at the University of British Columbia, Vancouver, in Canada who helped craft the Canadian guidelines. Arbour, who works with Canadian aboriginal populations, believes they should be treated as collaborators and shown drafts of papers prior to publication, something she routinely does in her own genetics work.
"I don't object" to this approach in principle, says Kenneth Kidd, a population geneticist at Yale University, but it would make research "a lot more difficult." He and his wife, Judith Kidd, have amassed 3000 samples from 57 populations over the years. It would be virtually impossible to find a nomadic tribe from whom samples were collected a decade ago and share a planned publication, he says.
I think the idea of shared publication is excellent! In any case, read the full article here.

0 comments:

welcome to my blog. please write some comment about this article ^_^

The Face of God – the French version


This is a weekly post by Nidhal Guessoum (see his earlier posts here). Nidhal is an astrophysicist and Professor of Physics atAmerican University of Sharjah.

In a recent post, I decried the exaggerated usage of God metaphors by scientists or writers each time some (presumed) breakthrough or important result or idea is communicated to the public. And I specifically mentioned the recent references to “God’s toe” and to “the face of God”.
Now, when I got a moment to take a look at the French scene (of Science, Religion, and Media), I was stunned to find a book, fresh out of the presses, titled… you guessed it… “The Face of God” (Le Visage de Dieu).
I haven’t read the book, and I don’t intend to, so this is not a review; it is a commentary on side issues raised by this book, its authors, its title, etc.
The first thing that should be mentioned is that the book has been given unprecedented exposure in the French media, especially considering its overt spiritual tone. Indeed, the Bogdanov twins (more on them in a minute) state clearly that they believe that the Creator conclusion is inescapable from the results of modern Cosmology. They themselves are not particularly religious, in the sense that they do not relate to any specific affiliation, but they insist on the divine inference. What “cosmological results” are they basing themselves on to make that “divine inference”? Simply put: the anthropic principle, or more precisely, the fine tuning of the universe. (For those who are not very familiar with this concept, it is – in a nutshell – the fact that many/most of the fundamental properties of the universe, from the charge of the electron to the speed of light, and the total content and rate of expansion of the universe have values that could not have been even slightly different if life, intelligence, and consciousness, like humans and other such creatures, were to exist. Needless to say, many have concluded that a Creator must be behind such “fine tuning”, and this whole “anthropic principle” has for the past few decades become a very controversial topic. More on this some other time, if you wish…) In a recent TV interview, the Bogdanovs referred to this fine tuning of the universe as the “cosmic code” and said that it must have been written by a Creator.
The second thing that must be noted is the fact that three (not just one) illustrious scientists have endorsed the book by writing a preface and two post-faces. This, in itself, is notable, but not overly surprising, as oftentimes authors seek the support of heavyweights in the field to give credence to their work and help increase its sales. But in this case the feat is simply extraordinary. Why? Because of the huge asymmetry between the authors (who are very lightweight and even controversial) and the three endorsers (who are very heavy weights)! The latter are: Robert Wilson, who (with Arno Penzias) discovered the microwave cosmological background in the 60’s and received the Nobel Prize in 1978; John Mather, who (with George Smoot) in 2006 received the Nobel Prize for the variations they found in the microwave cosmological background, which Smoot likened to "seeing the face of God"; Jim Peebles, a renowned cosmologist who has received half a dozen medals, awards, and honors (though not the Nobel Prize). Needless to say, any author would dream of having such people preface his/her book or even write a short blurb. Now, don’t the Bogdanovs deserve that? How do I know that their book is not superb enough to receive such accolades (since I haven’t read it)?

Well, the Bogdanovs started their careers in France as presenters of science-fiction TV shows. But their shows, while futuristic and avant-garde, were always loaded with science material and often raising “metaphysical” issues. Then in 1991, they published a book from a series of interviews with the French philosopher Jean Guitton under the title “God and Science” (Dieu et la Science), and it became a best-seller. But soon the “Bogdanov Affair” exploded when the astrophysicist Trinh Xuan Thuan (TXT) accused them of having plagiarized from his best-selling book “The Secret Melody” (La Mélodie Secrète), where indeed he makes the same “creator inference” from the fine tuning of the universe; they later settled out of court. (Full disclosure: TXT is a friend of mine, though one can easily show objectively that he is a great scientist and author.) The Bogdanovs later sought to beef up their scientific credentials and obtained doctorates (after great difficulties) and published a couple of papers, which the scientific community duly ignored. They then turned to writing more science-and-God books, including “Before the Big Bang (Avant le Big Bang, 2004), “Voyage to the initial instant” (Voyage vers l'Instant Zéro, 2006), “We are not alone in the universe” (Nous ne sommes pas seuls dans l'Univers, 2007), and “At the beginning of time” (Au commencement du temps, 2009); they have been very productive, as you can see…

Success in book writing has always been a mystery: why some authors achieve astronomical sales figures while often not deserving it and others remain obscure – if they get published at all – depends on many factors, mainly sociological. Why the media latch on to some authors much more than others, even when they expound views that the “intelligentsia” doesn’t quite like (e.g. the “divine inference”) is also something that few people have figured. And why some heavyweights accept to write prefaces to books by controversial authors is totally puzzling to me. If one of them had been Smoot, we could have related it to the “face of God” metaphor (the authors having borrowed it from him), but he’s not even one of the three; besides, some (like Peebles) are known to be atheists…

Can somebody help me understand some of these phenomena?


0 comments:

welcome to my blog. please write some comment about this article ^_^